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The primary objective was to examine the utility of a novel method of detecting ‘‘actual’’ kinematic
changes using the within-subject variation. Twenty firefighters were assigned to one of two groups
(lifting or firefighting). Participants performed 25 repetitions of two lifting or firefighting tasks, in three
sessions. The magnitude and within-subject variation of several discrete kinematic measures were com-
puted. Sequential averages of each variable were used to derive a cubic, quadratic and linear regression
equation. The efficacy of each equation was examined by contrasting participants’ sequential means to
their 25-trial mean ± 1 SD and 2 SD. The magnitude and within-subject variation of each dependent mea-
sure was repeatable for all tasks; however, each participant did not exhibit the same movement patterns
as the group. The number of instances across all variables, tasks and testing sessions whereby the 25-trial
mean ± 1 SD was contained within the boundaries established by the regression equations increased as
the aggregate scores included more trials. Each equation achieved success in at least 88% of all instances
when three trials were included in the sequential mean (95% with five trials). The within-subject varia-
tion may offer a means to examine participant-specific changes without having to collect a large number
of trials.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Because people exhibit characteristic motion patterns when
executing specific tasks (Morriss et al., 1997; Rodano and
Squadrone, 2002), and unique responses to changes in the task or
environmental constraints (Caster and Bates, 1995; Dufek and
Bates, 1990; Dufek et al., 1995), there is a need to establish the
range of typical variation outside of which reflects an actual change
in movement behavior. More specifically, it would be helpful to
know when a kinematic difference is of a magnitude that is beyond
what would be expected by the normal trial-to-trial variation. In
the presence of between-subject variation (i.e. heterogeneity),
averaging data across participants could inadvertently lead to the
conclusion of ‘‘no significant intervention effect’’ when in fact sub-
stantial and clinically-relevant adaptations did occur within some
individuals (James and Bates, 1997). Also possible is the finding
of a statistically significant effect, but the aggregated (group-level)
response misrepresented the breadth of individual strategies that
were used (Caster and Bates, 1995; Dufek and Bates, 1990; Dufek
et al., 1995; Scholes et al., 2012). For example, Dufek et al. (1995)
examined how individuals adapted their maximum vertical ground
reaction force while running in response to variations in stride
length, and found that nobody exhibited the group’s average strat-
egy. If no individual reflects the mean, then the assessment of
group averages compromises the ability to investigate several
questions and probe different mechanisms.

Understanding the degree to which a specific pattern or
descriptor of motion varies across a population can assist in devel-
oping an effective intervention; however, an effort must also be
made to estimate the variation that would be expected within indi-
viduals. Hopkins (2000) suggested that intra-individual variability
is important for researchers because it impacts the precision of all
experimental variables, and could adversely affect any conclusions
and recommendations. One approach to address this challenge in
intervention research may be to identify the descriptors of motion
that are least variable and thus better indicators of change, though
it cannot be assured that these descriptors would be ‘‘meaningful’’
if selected based strictly on their variability. Alternatively, if there
are specific descriptors of motion that researchers wish to change
because they have been linked with adverse health (e.g. uncon-
trolled frontal plane knee motion (Hewett et al., 2005)) or poor
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performance (e.g. hip extension velocity (Harbili and Alptekin,
2014)), it is more logical to first identify the magnitude of with-
in-subject variation so that boundary criteria can be established
outside of which would be considered an actual meaningful
change.

In general, collecting several trials of a given task is thought to
provide a more stable estimate of an individual’s movement
behavior (Bates et al., 1983) for the purpose of evaluating an inter-
vention effect or contrasting multiple conditions. If too few trials
are performed, the observed variation may fall inside that which
is typical for the dependent measures of interest, and thus poten-
tially mask important findings. For this reason, the minimum num-
ber of trials necessary to achieve stable estimates of various
descriptors of motion have been reported for several activities,
including running (Bates et al., 1983; DeVita and Bates, 1988),
walking (Hamill and McNiven, 1990), vertical jumping (Rodano
and Squadrone, 2002), lifting (Dunk et al., 2005), drop landing
(James et al., 2007) and cricket bowling (Stuelcken and Sinclair,
2009). However, the number of trials needed has ranged between
four and twenty depending on the metric of interest and activity
in question. Because it is often not practical or possible to collect
twenty trials of a single condition, there is a need to explore alter-
native solutions that can be easily integrated into a number of
methodological designs while accounting for the potential within-
and between-subject variation. More specifically, for the purpose
of exploring how or why an individual (or group) responds to a
particular intervention, it may be critical to employ an experimen-
tal approach that uses the variation displayed by each individual so
that the interpretation of the effect is not limited by differences
amongst the group.

Against this backdrop, the objectives of this study were two-
fold: (1) to examine the within- and between-subject variation of
discrete kinematic variables chosen to characterize the perfor-
mance of four occupationally relevant tasks; and (2) to evaluate
the potential in using the within-subject variation as a criterion
with which to define within-subject differences. The kinematic
variation observed within participants may provide a means to
establish a range for each performer, outside of which could be
defined as a genuine difference, whether 3, 10 or 25 trials of a par-
ticular task were performed, so that future work is not limited to
group analyses or constrained by the heterogeneity of the
participants.
2. Methods

2.1. Participant selection

Twenty firefighters (18 men and 2 women) from the Waterloo
and Kitchener Fire Departments were recruited to participate in
this investigation. Ten (9 men and 1 woman) were randomly
assigned to each of two groups (i.e. performed general lifting or
specific firefighting tasks). A description of the participants can
be found in Table 1. Exclusion criteria included firefighters with
known musculoskeletal injury or pain at the time of testing and
those restricted to light duty work. The study was approved by
the Human Research Ethics Committee of the University and all
participants gave informed consent confirming their involvement,
prior to beginning the study.
Table 1
The mean (standard deviation) age, height and body mass of participants in the
general lifting and firefighter-specific group.

Group Age (years) Height (m) Body mass (kg)

Lifting 35.1 (7.8) 1.79 (0.03) 88.0 (13.3)
Firefighter 32.3 (6.4) 1.81 (0.07) 89.6 (16.0)
2.2. Task selection

Four occupationally relevant tasks were simulated in a labora-
tory setting: (1) Light box lift – from standing, a 6.8 kg box
(0.33 � 0.33 � 0.28 m) was lifted from the floor to waist height
and returned to the ground at a self-selected pace; (2) Heavy box
lift – from standing, a 22.7 kg box (0.33 � 0.33 � 0.28 m) was lifted
from the floor to waist height and returned to the ground at a self-
selected pace; (3) Hose drag – a 6.4 cm diameter rope, connected to
a cable machine was placed over the right shoulder and dragged
forwards approximately 3 m (movement was initiated from a stag-
gered stance with the left foot forwards); and (4) Forced entry – a
ceiling-mounted ‘‘heavy bag’’ was struck with a 4.5 kg sledgeham-
mer (direction of swing was self-selected). The hose drag resis-
tance and mass of the sledgehammer were chosen to reflect the
standardized protocols of the Candidate Physical Ability Test
(CPAT), a test developed by the International Associations of Fire
Fighters (IAFF) and Fire Chiefs (IAFC) to assess candidates’ physical
ability to perform tasks that are consistent with the duties of
firefighting.

2.3. Experimental protocol

Participants were instrumented with infrared markers for kine-
matic tracking and familiarized with the tasks they would be asked
to perform using a standard set of instructions. For example, they
were asked to ‘‘advance forwards with the hose as they would at
the scene of fire’’, and to ‘‘swing the sledgehammer as if forcing a
door’’. Three to five practice trials were performed to ensure par-
ticipants understood the task instructions. Individuals assigned to
the general lifting task group only performed the two lifting tasks
(i.e. light and heavy box lift), while participants in the specific fire-
fighter task group performed a simulated hose drag and forced
entry task. The hose drag was resisted by a load of approximately
13 kg (load attached in series with rope).

Participants in either group performed 25 repetitions (five sets
of five trials) of their two assigned tasks; the 10 sets were complet-
ed in random order. Approximately 15 s and 2 min of rest were
given between trials and sets, respectively. Once 5 sets of both
tasks had been completed, participants were given 15 min to
recover passively, and then asked to repeat the same 10-set proto-
col a second time (i.e. session two). Participants returned to com-
plete a third session, identical to the first two, within one week
following their initial test. No feedback was given regarding task
performance at any point throughout the investigation.

2.4. Data collection and signal processing

Three-dimensional kinematic data were measured using an
active optoelectronic motion capture system (Optotrak� Certus™,
NDI, Waterloo, ON, Canada). The proximal and distal endpoints of
the trunk, pelvis, thighs, shanks and feet were located with a
digitizing probe, and the hip joint centers (HJC) and knee joint axes
(KJA) were determined ‘‘functionally’’ using similar methods to
those described by Begon et al. (2007) and Schwartz and
Rozumalski (2005). Briefly, participants were asked to perform
10 repetitions of open-chain hip flexion/extension, abduction/ad-
duction and circumduction (all with the knee extended) and
open-chain knee flexion/extension for the hip and knee joint com-
putations, respectively. Using functionally defined segment end-
points for the shank and thigh has been shown to minimize the
variation introduced via digitization and thus provide a more
repeatable way to create each individual’s link segment model
(Frost et al., 2012). Sets of 5 or 6 markers, fixed to rigid pieces of
plastic, were secured to the trunk, pelvis, thighs, shanks and feet
with Velcro� straps and used to track the position and orientation
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of each body segment within a calibrated measurement volume.
One standing calibration trial was collected such that the orienta-
tion of each segment’s local axis system, as defined by its end-
points, could be determined via a transformation from an axis
system embedded within each rigid body. The marker data were
collected at 32 Hz and smoothed using a low-pass filter (4th order,
dual pass Butterworth) with a cut-off frequency of 6 Hz.
2.5. Data analyses

Participants’ movement patterns were characterized by nine
variables, each chosen to reflect a possible mechanism for injury
(e.g. spine motion (Callaghan and McGill, 2001; Marshall and
McGill, 2010)) or a coaching observation that has been cited as
a possible injury risk factor (e.g. trunk angle (Marras et al.,
1993; Punnett et al., 1991)). The nine variables were: (1–3) spine
flexion/extension (FLX), lateral bend (BND) and axial twist (TST) –
the relative orientation of the trunk was expressed with respect
to the pelvis and the corresponding direction cosine matrix was
decomposed with a rotation sequence of flexion/extension, lateral
bend and axial twist (Cole et al., 1993) to compute the spine
angle about each axis. The orientation of the lumbar spine in a
relaxed upright standing trial was defined as zero degrees; (4)
trunk angle relative to the vertical (TRK) – the relative orientation
of the trunk (flexion/extension only) was expressed with respect
to a pelvis segment that was free to move with the body but con-
strained about the flexion/extension axis, thereby remaining
upright; (5) shank angle relative to the vertical (SHK) – the rela-
tive orientation of the left and right shank (flexion/extension
only) was expressed with respect to the upright pelvis; (6) hip
to ankle distance (HIP) – the position of each hip joint in the
anterior/posterior (A/P) direction was described relative to the
same side ankle (the upright pelvis was to define a body-fixed
A/P axis); (7) knee to ankle distance (KNE) – the position of each
knee joint in the A/P direction was described relative to the same
side ankle; and (8–9) left (LFT) and right knee (RGT) position rela-
tive to the frontal plane – each knee joint’s position (medial/lat-
eral) was described relative to a body-fixed plane created using
the corresponding hip, ankle and distal foot (Fig. 1). The SHK,
HIP and KNE were only computed for the lead leg (left) of the
fireground-specific tasks and defined as an average of the left
and right sides for lifting.

To objectively define the start, mid-point (lifting tasks only) and
end of each trial, event detection algorithms were created in
Visual3D™ (Version 4, C-Motion, Inc., Germantown, MD, United
States) by tracking the motion of the trunk, pelvis and whole-body
center of mass. Specifically, the lifting tasks were separated into a
descent and ascent phase using the vertical displacement of the
center of mass, the start and end of the hose drag were described
by anterior displacement of the trunk and toe-off of the forward
positioned foot, respectively, and the start and end of the forced
entry were defined by changes in the position of the trunk and pel-
vis (the end was defined as the approximate instant of contact).
The forced entry task was processed to reflect a right-handed
swing. Maximums, minimums, ranges and means were computed
for the nine dependent variables and the ‘‘peak’’ of each, with the
exception of BND and TST, was described as the deviation (-
maximum or minimum) hypothesized to be most relevant to the
types of injuries sustained by firefighters (i.e. FLX – flexion, TRK
and SHK – forward bend, HIP – posterior displacement, KNE – ante-
rior displacement, LFT and RGT – medial displacement). Peak BND
and TST were described as the range (i.e. max – min) observed. The
within-subject variation is presented as an aggregate score of the
25-trial standard deviations computed for each subject and
session.
2.6. Statistical analyses

The 25-trial mean for each task was used to examine the
between-session differences for each dependent measure. The
magnitude and within-subject variation of the maximum, mini-
mum and mean of each task were investigated separately.
Between-session comparisons were made using a general linear
model with one within-subject factor (IBM SPSS Statistics,
Version 20.0, Armonk, NY, U.S.A.). Significant session effects were
described by p-values less than 0.05. To assess the differences
amongst participants, a second set of analyses was conducted
whereby the participants were treated as an independent factor
(i.e. blocked design). Once again, between-session comparisons
were made with a general linear model, but participant was also
included as a ‘‘between-subject’’ factor. Because the error term
for the within-subject factor was equivalent to the subject � ses-
sion interaction, only significant (p < 0.05) main effects are
presented.

External load (i.e. heavy versus light lifts) and task (i.e. hose
drag versus forced entry) comparisons were also made on the
within-subject variation for each dependent variable. The influence
of each factor (external load or task) was examined with a general
linear model with one repeated measure (the data were collapsed
across all three sessions), and significant differences were
described by p-values less than 0.05.

2.6.1. Within-subject differences
The group’s sequential mean (i.e. average of 2, 3, 4,. . .25 trials)

and within-subject variation (i.e. each participant’s between-trial
standard deviation (SD)) was computed for the peak of every vari-
able, task and testing session. To facilitate variable and task com-
parisons, the sequential within-subject variation was normalized
by that observed over 25 trials. Based on previous work (e.g.
James et al., 2007) it was hypothesized that 25 trials would be suf-
ficient to establish a stable estimate of the group mean and
between-trial variation for each individual participant, and thus
also provide an opportunity to define boundary criteria outside
of which would reflect an actual difference whether 3, 5, or 15 tri-
als were collected (Fig. 2). Because the magnitude of the group
mean and within-subject variation will depend on the number of
trials collected, regression analyses were used to establish relation-
ships between the upper limits of participants’ kinematic variation
(i.e. 25 trial mean ± 1 SD and 2 SD) and their sequential mean
scores. In each instance, the difference between the sequential
mean (e.g. 5-trial) and the 25-trial mean ± 1 SD and 2 SD was nor-
malized by the sequential variation such that boundary criteria
could be developed for any number of trials without knowing the
true dispersion for a particular variable. The results for all vari-
ables, tasks and testing sessions were collapsed and used to create
three generalizable regression equations (i.e. cubic, quadratic, lin-
ear) that could help to define limits for within-subject differences
if 25 or fewer trials are collected. The most conservative upper/
lower limit (i.e. that accommodating the largest variation) was
used to define to the upper and lower limits for all subsequent
analyses.

Using the regression equations developed, and each par-
ticipant’s sequential mean scores, the number of trials used to
compute the sequential mean, and the group’s sequential within-
subject variation, limits (upper and lower) were created for each
variable outside of which would be defined as different. For exam-
ple, using the equation y = (�0.05x + 3.5)z, where y is the upper
limit, x is the number of trials, and z is the group’s sequential with-
in-subject variation, differences in spine flexion would be defined
by a magnitude greater than 9� if the sequential variation associat-
ed with 10 trials was 3�. The magnitude of the regression coeffi-
cients used to define the upper and lower limits were kept the



Fig. 1. Participants’ movement patterns were characterized with the following variables: (A) spine flexion/extension; (B) spine lateral bend; (C) spine axial twist; (D) trunk
angle; (E) shank angle; (F) hip-ankle distance; (G) knee-ankle distance; (H) left knee position; and (I) right knee position.

Fig. 2. The sequential mean, 25-trial mean, and 25-trial variation (±1 SD and 2 SD) for one sample variable. The shaded area above the sequential mean reflects the difference
between the upper boundary of the group’s 25-trial mean (±2 SD). The shaded area below the sequential mean reflects the lower boundary difference. Regression equations
were computed to establish a relationship between the magnitudes of these shaded areas, the number of trials included in the sequential mean, and the group’s within-
subject (WS) variation.

482 D.M. Frost et al. / Journal of Electromyography and Kinesiology 25 (2015) 479–487



D.M. Frost et al. / Journal of Electromyography and Kinesiology 25 (2015) 479–487 483
same. The utility of each equation was then evaluated by comput-
ing the number of instances across all variables, tasks and testing
sessions whereby the computed upper and lower limits extended
beyond the measured 25-trial mean + 1 SD and – 1 SD. The number
of successful instances was expressed as percentage of the total
number of possible variable, task and session computations. For
comparative purposes, the utility of a fourth method that relied
solely on the group’s within-subject variation was also examined.
Limits were defined by the following equation: y = 2z + b; whereby
y and b were the mean and SD of the group’s sequential within-
subject variation, respectively. For this method, boundary criteria
were created using 1, 1.5 and 2 SD.
3. Results

3.1. General tasks (lifting)

For both the light and heavy lifting tasks, Session was a sig-
nificant factor for TRK and HIP (p < 0.042). But with the exception
of peak HIP during the heavy condition, differences were limited to
the mean and the descent phase. Subject was a significant factor for
every variable investigated (p < 0.001), indicating heterogeneity
amongst the group.

With regards to the within-subject variation, significant Session
effects were found for mean and peak SHK and KNE (p < 0.029)
during the descent phase of the heavy lift and mean and peak
TRK (p < 0.031) for the light lifting task (Fig. 3). Subject was a sig-
nificant factor for each variable investigated (p < 0.020).

Increasing the external load of the lifting task had a significant
impact on the magnitude of the within-subject variation for 3 of 21
variables investigated (peak FLX and KNE, and mean TRK during
the descent; Fig. 3).
3.2. Specific tasks (firefighting)

No significant between-Session differences were found for any
of the variables used to characterize the forced entry task
(Fig. 4). Only 7 of the 24 hose drag variables were significantly dif-
ferent between sessions. Once again, Subject was a significant fac-
tor for each variable investigated (p < 0.001).

Session had a significant impact on the within-subject variation
of six hose drag (max TRK, KNE, LFT and mean FLX, TST, TRK;
p < 0.049) and two forced entry (min BND and mean HIP) variables
(Fig. 3). Subject was a significant factor across all variables
(p < 0.001).

The magnitude of the within-subject variation was significantly
different between the hose drag and forced entry tasks for 13 of the
24 variables examined (max FLX, TRK, HIP and KNE, all minimums
with the exception of HIP and KNE, and mean HIP, KNE and LFT;
Fig. 4).
3.3. Within-subject differences

Averaged across all variables, tasks and testing sessions, the
mean and standard deviation of the group’s within-subject varia-
tion decreased and increased, respectively, as fewer trials were
used to compute the sequential mean (Fig. 5). A similar finding
was also noted when contrasting the sequential means with the
upper and lower limits defined by the 25-trial variation (Fig. 6).
A non-linear relationship was noted between the number of trials
included in the sequential mean and the magnitude of the differ-
ence defined herein as a bona fide difference. The following three
regression equations were generated based on the abovemen-
tioned findings:
(1) y = �0.0005x3 + 0.0253x2 � 0.4491x + 5.0763 (r2 = 0.971,
p < 0.001).

(2) y = 0.0052x2 � 0.2207x + 4.4325 (r2 = 0.928, p < 0.001).
(3) y = �0.0796x + 3.7304 (r2 = 0.797, p < 0.001).

In each instance, y would be the magnitude of a bona fide differ-
ence (i.e. boundary criteria outside of which would be described as
an actual change), and x is the number of trials collected. The num-
ber of instances across all variables, tasks and testing sessions
whereby the 25-trial variation was contained within the bound-
aries established by the cubic, quadratic and linear regression
equations increased as the aggregate scores comprised more trials
(Fig. 7). However, each approach achieved a success rate of at least
88% with only three trials. The limits defined by each of the regres-
sion equations were able to capture the 25-trial variation in 95% of
all instances when five trials were used. In comparison, the 4th
method examined that relied exclusively on the within-subject
variation had success rates ranging from 74–84% to 85–92% for
three and five trials, respectively (Fig. 6). Upper and lower limits
were defined successfully in 96% of all instances with 10 trials.
4. Discussion

In general, there were few between-session differences found in
the variables chosen to describe each task; however, in every
instance, Subject was found to be a significant factor. This implies
that participants exhibited unique movement behaviors that did
not necessarily reflect that of the group or each other. Although
this variation has often been perceived as noise that affects the
power to detect differences between multiple conditions (van
Dieen et al., 2002), it could also be functional (Davids et al.,
2003) and reveal important information regarding the task, envi-
ronment or movement strategies employed by the individuals
being studied (Mathiassen et al., 2003). For example, knowing
how much performers’ spine flexion varies during a heavy lifting
task could help to monitor the effects of a short- or long-term
intervention on an individual level (Scholes et al., 2012).

Because the sources and roles of movement variability are
theoretically and experimentally challenging to interpret and
accommodate, respectively, both the between- and within-subject
variation are frequently reported by authors exploring the effect of
a particular condition or intervention (e.g. Granata et al., 1999;
Grills et al., 1994; Kjellberg et al., 1998; Mathiassen et al., 2003;
Mirka and Baker, 1996; Scholes et al., 2012; van Dieen et al.,
2002). Several metrics have been used to describe this dispersion,
although the most widely adopted may be the coefficient of varia-
tion (CV) given that it provides a normalized estimate that can be
contrasted against other variables and used to make comparisons
with earlier work. However, a CV may have little meaning if it is
not computed on ratio scale data and thus its utility in helping to
define actual changes is limited. For instance, the CVs of the max-
imum and minimum knee to ankle distance during session one of
the forced entry task in this study were 31% and 232%, respectively.
This finding suggests that the maximum distance was far more
repeatable, but because the mean of the minimum distance was
near zero, the CV was not an appropriate descriptor of the varia-
tion. As an alternative, the variation of each dependent measure
in this study was described by dividing the within-subject varia-
tion by that seen between participants. This approach ensured that
comparisons could still be made across variables, between tasks,
and with future research. Not surprisingly, there was more varia-
tion amongst each group than was observed within the individual
participants, which lends further support to the notion that in
many cases, the interpretation of any findings could be constrained
by the heterogeneity of the population studied (Caster and Bates,



Fig. 3. The 25-trial mean (SD) within-subject variation exhibited during sessions 1, 2 and 3 for the HEAVY and LIGHT lifting tasks. Variation in the peak and mean of the
descent phase (unloaded) and the mean of the ascent phase (load in hands) are presented as a function of the maximum between-subject SD observed for a given variable (i.e.
that of the peak, mean descent or mean ascent). Significant session effects (p < 0.05) are described with an ⁄. Instances marked with a D denote a significant difference
(p < 0.05) in the within-subject variation observed between the two conditions. Although not shown, subject was a significant factor across all variables for both conditions. The
model animations depict two unique movement strategies that were used to perform the lifting tasks.
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1995; Dufek and Bates, 1990; Dufek et al., 1995; Scholes et al.,
2012).

Various statistical analyses have been used to determine the
minimum number of trials necessary to achieve a stable estimate
of the mean for a range of variables and activities (Bates et al.,
1983; DeVita and Bates, 1988; Dunk et al., 2005; Hamill and
McNiven, 1990; James et al., 2007; Rodano and Squadrone, 2002;
Stuelcken and Sinclair, 2009). As was shown in this study, increas-
ing the number of trials collected for a particular condition can also
reduce the standard deviation of the group (van Dieen et al., 2002).
But while these approaches have helped to highlight the potential
limitations in collecting too few trials and brought attention to the
impact of movement variability, they have not necessarily offered a
viable solution to deal with the variation that is commonly seen
within and between participants across a range of methodological
designs, nor have they provided a means to describe participant-
specific or actual changes. Slight modifications to a task, condition
or the population being tested will likely alter the variation associ-
ated with a particular metric, and thus require a different number
of trials to achieve a stable estimate of the dispersion. Further, and
perhaps more importantly, collecting a large number of trials is
often not feasible or appropriate to test hypotheses.

The method proposed in this paper to examine the relevance of
within-subject differences is comparable to previous work that has
sought to describe clinical differences (e.g. Knutson, 2005) or make
meaningful inferences using confidence limits (e.g. Batterham and
Hopkins, 2006), but instead used participants’ variation to define
boundary criteria. As expected, its utility did improve as more tri-
als were used to compute the upper and lower limits; however,
using an average of only three repetitions was still able to capture
the measured 25-trial variation in 88% of all instances, averaged
across all variables and tasks (using five trials increased the success
rate to 95%). Although these findings are encouraging, further work
is needed to examine the merit of the equations proposed using a
different set of variables, tasks and participants, before it can be
stated that the boundary criteria do in fact reflect actual
differences.

In summary, the findings of this study show that while move-
ment is variable between individuals who perform the same tasks,
it may be possible to establish boundary criteria for each performer



Fig. 4. The 25-trial mean (SD) within-subject variation exhibited during sessions 1, 2 and 3 for the simulated HOSE DRAG and FORCED ENTRY tasks. Variation in the max, min
and mean of each task is presented as a function of the maximum between-subject SD observed for a given variable (i.e. that of the max, min or mean). Significant session
effects (p < 0.05) are described with an ⁄. Instances marked with a T denote a significant difference (p < 0.05) in the within-subject variation observed between the two tasks.
Although not shown, subject was a significant factor across all variables for both tasks. The model animations depict two unique movement strategies that were used to
perform the hose drag and forced entry tasks.

Fig. 5. The mean and standard deviation of participants’ within-subject variation across all variables, tasks and testing sessions. The sequential variation was normalized by
that measured over 25 trials so that a general relationship could be established for all variables.

D.M. Frost et al. / Journal of Electromyography and Kinesiology 25 (2015) 479–487 485
outside of which would reflect a bona fide change in motion.
Several factors including perceived risk, previous experience, phy-
sical capacity (structural and functional), and environmental con-
ditions can interact to constrain task performance (Davids et al.,
2003), which is why efforts must be made to ensure that the
experimental protocols, instrumentation and data analyses are
appropriate to test the stated hypotheses. If these factors are not
adequately accounted for (theoretically and experimentally), the
understanding of how and why individuals’ adapt their movement
behavior in response to various interventions will be
compromised. Performers may adapt their movement strategies
if asked to complete multiple trials of the same task (e.g. due to
motor learning- and/or fatigue-related processes), but based on
the findings of this investigation, the magnitude of this dispersion
appears to be much smaller than what would be observed amongst
a group – at least in the tasks studied here. When an individual
exhibits a change in their movement behavior beyond what would
be considered ‘‘typical’’, it should arguably be described as an
‘‘actual’’ difference. Although much more evidence is needed to
substantiate the method proposed in this study, it may offer an



Fig. 6. The differences between each individual’s sequential means and the upper and lower limits of their biological variation, as defined by the 25-trial mean ± 1 SD and
2 SD. In each instance, the difference scores were normalized by the group’s sequential within-subject variation such that boundary criteria could be generalized to any
number of trials. The results across all participants, variables, tasks and testing sessions were collapsed and used to create three generalizable regression equations (i.e. cubic,
quadratic, linear) that could help to define limits for within-subject differences.

Fig. 7. The instances across all variables, tasks and testing session (expressed as a percentage of the total number possible) whereby the computed upper and lower limits, as
defined by the regression equations and/or within-subject variation, extended beyond the measured 25-trial mean +1 SD and �1 SD. The success rate for 3, 5 and 10 trials is
also listed.
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effective means to explore changes in an individual’s behavior by
exploiting their own between-trial variation.
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